The pH hypothesis of postconditioning: staccato reperfusion reintroduces oxygen and perpetuates myocardial acidosis.
نویسندگان
چکیده
BACKGROUND It is unclear how reperfusion of infarcting hearts with alternating cycles of coronary reperfusion/occlusion attenuates infarction, but prevention of mitochondrial permeability transition pore (MPTP) formation is crucial. Acidosis also suppresses MPTP formation. We tested whether postconditioning protects by maintaining acidosis during early reoxygenation. METHODS AND RESULTS After 30-minute regional ischemia in isolated rabbit hearts, reperfusion with buffer (pH 7.4) caused 34.4+/-2.2% of the risk zone to infarct, whereas 2 minutes of postconditioning (6 cycles of 10-second reperfusion/10-second occlusion) at reperfusion resulted in 10.7+/-2.9% infarction. One minute (3 cycles) of postconditioning was not protective. Hypercapnic buffer (pH 6.9) for the first 2 minutes of reperfusion in lieu of postconditioning caused equivalent cardioprotection (15.0+/-2.6% infarction), whereas 1 minute of acidosis did not protect. Delaying postconditioning (6 cycles) or 2 minutes of acidosis for 1 minute aborted protection. Reperfusion with buffer (pH 7.7) blocked postconditioning protection, but addition of the MPTP closer cyclosporin A restored protection. Reactive oxygen species scavenger N-2-mercaptopropionyl glycine, protein kinase C antagonist chelerythrine, and mitochondrial K(ATP) channel closer 5-hydroxydecanoate each blocked protection from 2 minutes of acidosis as they did for postconditioning. CONCLUSIONS Thus, postconditioning prevents MPTP formation by maintaining acidosis during the first minutes of reperfusion as reoxygenated myocardium produces reactive oxygen species that activate protective signaling to inhibit MPTP formation after pH normalization.
منابع مشابه
Pathophysiology of Ischemia/Reperfusion-induced Myocardial Injury: What We Have Learned From Preconditioning and Postconditioning?
Organ damage after reperfusion of previously viable ischemic tissues is defined as ischemia/reperfusion injury. The pathophysiology of ischemia/reperfusion injury involves cellular effect of ischemia, reactive oxygen species and inflammatory cascade. Protection against ischemia/reperfusion injury may be achieved by preconditioning or postconditioning. In this review, we discuss basic mechan...
متن کاملDelayed recovery of intracellular acidosis during reperfusion prevents calpain activation and determines protection in postconditioned myocardium.
AIMS Indirect data suggest that delayed recovery of intracellular pH (pHi) during reperfusion is involved in postconditioning protection, and calpain activity has been shown to be pH-dependent. We sought to characterize the effect of ischaemic postconditioning on pHi recovery during reperfusion and on calpain-dependent proteolysis, an important mechanism of myocardial reperfusion injury. METH...
متن کاملExploring the role of dimethylarginine dimethylaminohydrolase-mediated reduction in tissue asymmetrical dimethylarginine levels in cardio-protective mechanism of ischaemic postconditioning in rats
Objective(s): Reperfusion of ischaemic myocardium results in reduced nitric oxide (NO) biosynthesis by endothelial nitric oxide synthase (eNOS) leading to endothelial dysfunction and subsequent tissue damage. Impaired NO biosynthesis may be partly due to increased levels of asymmetrical dimethylarginine (ADMA), an endogenous inhibitor of eNOS. As dimethylarginine dimet...
متن کاملEffects of Postconditioning, Preconditioning and Perfusion of L-carnitine During Whole Period of Ischemia/ Reperfusion on Cardiac Hemodynamic Functions and Myocardial Infarction Size in Isolated Rat Heart
متن کامل
Combined postconditioning with ischemia and cyclosporine-A restore oxidative stress and histopathological changes in reperfusion injury of diabetic myocardium
Objective(s): Chronic diabetes impedes cardioprotection in reperfusion injury and hence protecting the diabetic heart would have important outcomes. In this study, we evaluated whether combined postconditioning with ischemia and cyclosporine-A can restore oxidative stress and histopathological changes in reperfusion injury of the diabetic myocardium. Materials and Methods: Streptozocin-induced ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation
دوره 115 14 شماره
صفحات -
تاریخ انتشار 2007